
C M I D C M I D II

MIDI Manager Objects for the
THINK Class Library

Programmer’s Reference Manual

Version 2.0

Paul D. Ferguson

Introduction

Copyright © 1991, 1992 Paul D. Ferguson. All rights
reserved.

Apple, PatchBay, and Macintosh are registered trademarks of
Apple Computer, Inc.

THINK C is a trademark of Symantec Corporation.

The style of this manual is unabashedly borrowed from the
THINK C documentation. Not only is imitation the sincerest
form of flattery1*, so too can it be justified as being familiar
to THINK C programmers (at least those who consult the
manuals…)

Please send any comments, suggestions, or bug reports to me
at CompuServe address 70441,3055.

I look forward to hearing from you.

Fergy

1* Or as Ben Franklin said, “There is much difference between imitating a good man and
counterfeiting him.”

Introduction

Introduction
Apple’s MIDI Manager is the future of MIDI programming on
the Macintosh. The MIDI Manager allows applications to
exchange MIDI messages with external devices (keyboards,
synthesizer modules, drum machines) as well as with other
MIDI Manager compatible applications. Using PatchBay,
MIDI musicians can connect multiple MIDI Manager
applications under MultiFinder.

This library CMIDI offers an object oriented programming
(OOP) interface to the MIDI Manager. A wide range of MIDI
applications, from simple editors and librarians to
sophisticated real-time musical tools, lend themselves to
object oriented design.

Built on the OOP extensions in THINK C 5.0 and the THINK
Class Library (TCL), CMIDI defines several objects which
make MIDI Manager programming in TCL applications
easier.

At least that’s the idea.

Audience
I assume that you are an experienced Macintosh programmer
and are already familiar with THINK C and object oriented
programming.

I also assume that you are familiar with the MIDI Manager
and have the developer’s documentation and software “MIDI
Management Tools” Version 2.0 or later. Presently, the only
place to obtain this package is through APDA21. CMIDI is useless
without these files.

These objects and methods make it easier to deal with the MIDI Manager, but they don't
completely insulate the programmer from it. For example, it is up to you to understand what an
input port readHook routine does, and how to initialize and manipulate MIDI ports. In the
documentation which follows, I often refer you to the “MIDI Management Tools”
documentation for specific information about the MIDI Manager.

21 The Apple Programmer’s and Developer’s Association. For more information, contact
APDA on CompuServe, AppleLink, or elsewhere.

Introduction

Big, Fat Disclaimer
This source code and documentation is made available as freeware from Paul Ferguson. The
source code and documentation are copyrighted in their entirety by the author. All rights
reserved. Commercial distribution of the source code or documentation is expressly
prohibited without written permission from the author.

You may freely use these routines in applications which you develop, provided that you
acknowledge my copyright in your application and documentation.

(I wouldn't mind if you sent me a copy of your program, either.)

Caveat Programmer
This code is thoroughly untested.

Let me repeat that: This code is thoroughly untested.

Do I have to say it again?

THIS CODE IS THOROUGHLY UNTESTED!

I created these objects primarily for my own use in developing MIDI Manager applications
(mostly the shareware program “Chroma”). I have used some, but not all, of these methods in
this development. The rest, well...

Don’t be fooled by this great documentation into thinking that just because I said a method will
do a certain thing, it actually will. I’m a dreamer, not a tester (pardon me, I mean “quality
assurance engineer”).

Software Requirements
This version of CMIDI is designed for version 2.0 of the MIDI Manager. Applications developed
using CMIDI are compatible with version 1.2, and the CMIDI routines compensate for
differences between 1.2 and 2.0. If you only have access to version 1.2 for your development
system, you will need to make modifications to the source files. Methods which are valid only
under version 2.0 are noted.

CMIDI is designed for use with THINK C 5.0. If you are still using THINK C 4.0, upgrade. If
you absolutely can’t, you can still use this source code with some minor modifications.

Refer to the last section of this manual for more details about using MIDI Manager 1.2 or
THINK C 4.0.

Introduction

CMIDI Objects
CMIDI defines six objects derived from CObject. Figure 1 illustrates their relationship.

CMIDIClient

CMIDIPort
CObject

CMIDIDataPort

CMIDITimePort
CMIDIInputPort

CMIDIOutputPort

Figure 1. CMIDI class hierarchy

Two abstract objects are defined: CMIDIPort and CMIDIDataPort. You normally don’t create
instances of these objects, rather you create CMIDITimePort, CMIDIInputPort, and
CMIDIOutputPort objects.

The CMIDIClient object is responsible for initializing the MIDI Manager interface, and
registering the application with the MIDI Manager. A global variable, gMIDIClient, must
be created and initialized prior to creating any port objects.

The port objects are used to read and write MIDI data. An application may have one or
more of each type of port object. Refer to the “MIDI Management Tools” manual for
more information about MIDI ports.

Introduction

Supported MIDI Manager Calls
The CMIDI methods provide programmatic support for the following MIDI Manager
functions.

CMIDI CMIDI CMIDI CMIDI
Client Time Input Output

Function Port Port Port

SndDispVersion •
MIDIGet/SetConnectProc* •
MIDIGetPorts •
MIDISignIn/Out •
MIDIWorldChanged •
MIDIAddPort • • •
MIDIGetPortInfo • • •
MIDIGet/SetPortName • • •
MIDIGet/SetRefCon • • •
MIDIGet/SetCurTime •
MIDIGet/SetOffsetTime •
MIDIGet/SetSync •
MIDIStart/StopTime •
MIDIWakeUp •
MIDIDiscardPacket* •
MIDIFlush •
MIDIGet/SetReadHook •
MIDIGet/SetTCFormat • •
MIDIWritePacket •

* MIDI Manager Version 2.0 only

Figure 2. Supported MIDI Manager functions

The following MIDI Manager calls are not supported in CMIDI. These functions are mostly used
by patchers or other clients. Refer to the“MIDI Management Tools” manual for details about
these calls. If you need the functionality of one of these, you can define additional methods for
CMIDIClient or one of the port objects.

MIDIRemovePort3 MIDIGetClients
MIDIGet/SetClientName MIDIConnect/UnConnectData
MIDIConnect/UnConnectTime MIDIGet/SetClRefCon
MIDIConvertTime MIDIGetClientIcon
MIDISetRunRate All MDVR calls

3See CMIDIPort::Dispose for a note about MIDIRemovePort.
Introduction

CMIDI Programming Basics
First of all, you must be familiar with programming with THINK C 5.0 and the THINK Class
Library. I assume you already understand the concepts of THINK C’s object oriented
programming.

I also assume you have an understanding of the MIDI Manager programming interfaces. As with
TCL, you must be familiar with its concepts, philosophy and theory of operations. For example,
you will need to create your application’s read hook functions, which requires an intimate
understanding of the MIDI Manager.

Before you begin, you will need to convert the MPW MIDIGlue.o object file and MIDI.h header
file to THINK C format. Refer to the last chapter of this manual “Creating a MIDI Manager
Library” for details on how to do this.

Creating CMIDI Objects
Let’s look at the basic flow of CMIDI programming. The following code segment shows the
creation of one of each type of object.

By design, you can create any of the CMIDI objects and send them messages even if the MIDI
Manager drivers aren’t loaded. Obviously no MIDI packets can be read or written in this
situation, but otherwise the objects should behave normally. Methods which return an error code
will return ErrNoMIDI (see CMIDIClient.h).

Note that this example does not include any error checking on creation of the objects.
Of course, you would never program this way, would you?

Introduction

#include "CMIDIClient.h"
#include "CMIDIInputPort.h"
#include "CMIDIOutputPort.h"
#include "CMIDITimePort.h"

extern CMIDIClient * gMIDIClient;
extern pascal myConnProc(short refNum ...);

void CMyApp::IMyApp(...)
{

...
// Initialize gMIDIClient and our port objects.
// And remember, error checking is for wimps!

gMIDIClient = new CMIDIClient;
err = gMIDIClient->IMIDIClient(MIDIRes);

itsMIDITime = new CMIDITimePort;
err = itsMIDITime->IMIDITimePort(

“\pMy Time”, // Port name
'ATim', // Port ID
TRUE, // Visible?
midiFormatMSec); // Time format

itsMIDITime->LoadPatches('ATim', 128);
itsMIDITime->StartTime();
itsMIDITime->SetConnection(myConnProc);

itsMIDIOut = new CMIDIOutputPort;
err = itsMIDIOut->IMIDIOutputPort(

“\pMy Out”, // Port name
'Out ', // Port ID
TRUE, // Visible?
itsMIDITime, // Time base object
0L); // Time offset

itsMIDIOut->LoadPatches('Out ', 128);

itsMIDIIn = new CMIDIInputPort;
err = itsMIDIIn->IMIDIInputPort(

“\pMy In”, // Port name
'In ', // Port ID

TRUE, // Visible?
itsMIDITime, // Time base object
midiGetNothing, // Time offset
INBUFSIZE, // Input buffer size
midiReader); // Read hook

itsMIDIIn->LoadPatches('In ', 128);
}

Figure 3. Initializing CMIDI objects

Introduction

Reading MIDI Data
The MIDI Manager notifies an application of incoming MIDI data via a readHook
procedure. There are two times when your readHook can be called: at interrupt or non–
interrupt time. For time–critical applications you must have a readHook routine which
is called at interrupt time.

For other types of applications like patch librarians or editors it may be simpler to have
a non–interrupt readHook. You can receive MIDI data by polling the MIDI Manager
from your application, document, or other object.

Interrupt level Read Hooks
Interrupt level routines in the Macintosh are subject to significant restrictions. Most
QuickDraw routines cannot be called, nor can any Toolbox calls which might move
memory. If you access any indirect objects or methods, those objects should be locked
via CObject::Lock().

If your application uses an interrupt–level readHook you may wish to optimize its
speed by storing a copy of your output port object’s reference number (via
GetRefNum) in a global variable that the readHook can access after restoring register
A5. You may then call MIDI Manager functions such as MIDIWritePacket
directly, bypassing the overhead of method calls within your readHook.

Polled Read Hooks
If your application does not depend on receiving MIDI data in real time, (in the above
code sample the midiGetNothing parameter to IMIDIInputPort means that the
port’s readHook will not be called at interrupt time), you can poll the MIDI Manager in
your application or document object’s Dawdle method. This will avoid the restrictions
inherent in interrupt processing.

CMyApp::Dawdle(long * maxSleep)
{

itsMIDIIn->Poll(midiGetCurrent);
*maxSleep = 5; // Wait 5 somethings

}

Depending on how quickly you need to retrieve MIDI data, you may wish to call
CMIDIInputPort::Poll() more than once in your Dawdle method.

In general, frequently polling the MIDI Manager is not a good idea because of the CPU
cycles involved in repeatedly calling the MIDI Manager drivers to see whether there is
any MIDI data waiting. Since the MIDI Manager is most likely used in MultiFinder
environments, this is a real concern.

Introduction

A Better Approach
You may wish to consider a “hybrid” of the two methods: Design an interrupt level
read hook, which sets a global flag whenever it requires the attention of your
application. Your application’s Dawdle() methods can then poll the global flag (which
is more efficient than executing the Toolbox trap for MIDIPoll) to know when to act.
Your application can then process the MIDI data in non–interrupt mode.

The following code segment shows an interrupt level read hook which reads note
on/off messages and builds a ring buffer for processing by the application’s Dawdle
routine.

//--- midiReader ---------------------------------
// This places MIDI note on/off data into a ring
// buffer.
//--
long MIDINotes[1000]; // Assume initialized to 0’s
long * currNote = MIDINotes;
long * nextNote = MIDINotes;

pascal short midiReader(MIDIPacket * thePacket,
 long TheRefCon)
{

long SysA5 = SetA5(TheRefCon);
long * notePtr;

if ((thePacket->flags == 0) &&
 (thePacket->data[0] < 0xA0)) // Note on/off

{
notePtr = (long *) &thePacket->data[0];
*currNote = *notePtr;
*currNote >>= 8;
if (++currNote == &MIDINote[1000])

currNote = MIDINote;
}
SetA5(SysA5);
return midiMorePacket;

}
...
// Dawdle routine extracts notes.
CMyApp::Dawdle(long * maxSleep)
{

while (*nextNote)
{

this->ProcessNote(*nextNote);
*nextNote = 0L;
if (++nextNote == &MIDINote[1000])

nextNote = MIDINote;
}

}

Introduction

Time Bases
When you create a time port object, it is initially set to internal time synchronization
unless a virtual connection is resolved which indicates external synchronization.

While your application is running, if an external time port is connected to your time
port (via PatchBay), you should check to see whether your time port’s synchronization
should be changed to external. Likewise, if a connection to your time port is broken,
you should change back to internal synchronization.

In version 1.x of the MIDI Manager, the only way to accomplish this was to call
MIDIWorldChanged in your event loop, and if it returns TRUE, check the time
port’s connections to see whether the synchronization state should be changed. Version
2.0 introduced the concept of a connection procedure to handle timing synchronization
changes. Refer to the “MIDI Management Tools” documentation for information about
writing a connection procedure.

The CMIDITimePort objects can automatically handle timing connections from other
MIDI Manager applications. After creating a time port object, send it an
AssignIdleChore message or a SetConnectionProc message.

Quitting Time
When quitting, your application should send each CMIDI object a SavePatches
message if you wish to save the current port connections (this is strongly recommended
in “MIDI Management Tools”). After that, send each port object a Dispose message,
then finally dispose of gMIDIClient.

Introduction

CMIDIClient

Introduction
CMIDIClient implements an object
for registering an application with
the MIDI Manager.

Heritage
Superclass CObject
Subclasses None

Using CMIDIClient
Each MIDI Manager application
must initialize itself and register
with the MIDI Manager. This
process allows other MIDI Manager
applications to recognize it, and
establish patches (connections) with
your application. The CMIDIClient
object is responsible for this.
You must have one and only one

Introduction

CMIDIClient object in your
application. The global variable
gMIDIClient, which is declared in CMIDIClient.c, must be created and initialized
prior to any port objects. Refer to the chapter on CMIDI Programming Basics for
examples of how to create and initialize gMIDIClient.

Variables
Variable Type Description
midiMgrVerNum unsigned long Returned by

SndDispVersion indicating what version of
the MIDI Manager is present.

If IMIDIClient was unsuccessful at signing into the MIDI Manager,
midiMgrVerNum will be zero.

Methods
IMIDIClient void IMIDIClient(short theIconID);

Initialize CMIDIClient. It signs into the MIDI Manager using the creator type of the
application (found in gSignature), icon number theIconID, and the application’s
file name.

NOTE: This method uses an 'ICN#' resource rather than an 'ICON' resource so that you
may simply specify your application’s bundle 'ICN#' resource.

Introduction

Dispose void Dispose(void);
Dispose of this object. Calls MIDISignOut.

GetPorts MIDIIDListHdl GetPorts(void);
Return a list of ports. See the “MIDI Management Tools” documentation of
MIDIGetPorts for more information about the fields of the MIDIIDList structure
this handle points to.

WorldChanged Boolean WorldChanged(void);
Calls MIDIWorldChanged. If the MIDI Manager is not present, returns FALSE.

GetVerNum unsigned long GetVerNum(void);
Return midiMgrVerNum. This is the full 32–bit version number from the BNDL
resource of the MIDI Manager. If the MIDI Manager is not present, midiMgrVerNum
will be zero.

GetShortVerNum unsigned short GetShortVerNum(void);
Return the upper word of midiMgrVerNum which contains the MIDI Manager’s
version number, e.g. 0x0120 = version 1.2, 0x0200 = version 2.0. You can use this in
your application to check for specific functionality or to alert the user of an
incompatibility.

Introduction

CMIDIDataPort

Introduction
CMIDIDataPort is an abstract class
for implementing input and output
ports.

Heritage
Superclass CMIDIPort
Subclasses CMIDIInputPort

CMIDIOutputPort

Using CMIDIDataPort
CMIDIDataPort contains methods
common to both input and output
ports. You should not create objects
of this type, but rather create
CMIDIInputPort and
CMIDIOutputPort objects.

Variables
Introduction

None.

Methods
LoadPatches OSErr LoadPatches(ResType theResType, short

theResID);
If itsResult is zero, check for a resource of type theResType and ID equal
theResID. If present, call MIDIConnectData for each connection. If a resource
error occurs or the specified resource does not appear to be a valid patch list for this
port, an error is returned.

GetTCFormat short GetTCFormat(void);
Return the port’s current time code format. Valid return values are midiFormatMSec
(0) to midiFormat25fpsBit (3). If the MIDI Manager is not present, this method returns
a -1.

SetTCFormat void SetTCFormat(short theFormat);
Set the port’s time code format.

Introduction

CMIDIInputPort

Introduction
CMIDIInputPort implements a
MIDI Manager input port.

Heritage
Superclass CMIDIDataPort
Subclasses None

Using CMIDIInputPort
An application may have one or
more input ports for reading
incoming MIDI data.
Incoming MIDI Manager packets
are read by a read hook procedure,
which can be set using SetReadHook. See the
chapter above titled “CMIDI Programming Basics” and the “MIDI Management
Tools” manual for more information about creating CMIDIInputPorts and read hooks.

Variables
None.

Methods

Introduction

IMIDIInputPort OSErr IMIDIInputPort(StringPtr theName, OSType
thePortID, Boolean theVisibleFlag, CMIDITimePort *
theTimePort, long theOffset, short theBufSize, ProcPtr
theReadHook);

Initialize the input port object, calling MIDIAddPort. Specify the port name, four
character port ID, time offset, buffer size, and read hook as per “MIDI Management
Tools”. Set theVisibleFlag equal TRUE if the port should be visible in PatchBay
(only MIDI Manager 2.x or later supports invisible input ports). Pass in a
CMIDITimePort object in theTimePort, or NULL if no time base is needed.
Following common convention, this method stores the current A5 register value in the
port’s refCon. You may change this by calling SetRefCon.

GetReadHook ProcPtr GetReadHook(void);
Return pointer to the current read hook. Refer to “MIDI Management Tools” for
information about read hook procedures.

SetReadHook void SetReadHook(ProcPtr theReadHook);
Set the port’s read hook procedure.

Introduction

Flush void Flush(void);
Call MIDIFlush to flush all packets currently waiting in the port’s input buffer.

Poll void Poll(long offsetTime);
Call MIDIPoll. If a MIDI packet is waiting, the MIDI manager will call the port’s
read hook procedure.

DiscardPacket void DiscardPacket(PacketPtr thePacket);
If the MIDI Manager version is 2.0 or greater, call MIDIDiscardPacket.
Otherwise do nothing.

Introduction

CMIDIOutputPort

Introduction
CMIDIOutputPort implements an
object for sending MIDI messages.

Heritage
Superclass CMIDIDataPort
Subclasses None

Using CMIDIOutputPort
An application may have one or
more output ports.
Using these methods, you can send
MIDI messages to the MIDI
Manager in one of two ways. If the
message you wish to send is already
in a valid MIDI Manager packet,
you can call WritePacket to send it. This is useful in read hooks
to echo packets back to the MIDI Manager.

If your message is not in a MIDI Manager packet, then you can call Write and
WriteTS. These methods will copy a valid MIDI message into a MIDIPacket
structure, initialize the other fields, and call the MIDI Manager. If the length of the data

Introduction

exceeds 249 bytes, it is automatically broken up into multiple MIDI Manager packets.
This is especially useful for sending long system exclusive messages.

Variables
None.

Methods
IMIDIOutputPort OSErr IMIDIOutputPort(StringPtr theName, OSType

thePortID, Boolean theVisibleFlag, CMIDITimePort *
theTimePort, long theOffset);

Initialize the output port object, calling MIDIAddPort. Specify the port name, four
character port ID, and time offset as per “MIDI Management Tools”. Set
theVisibleFlag equal TRUE if the port should be visible in PatchBay (only MIDI
Manager 2.x or later supports invisible output ports). Pass in a CMIDITimePort object
in theTimePort, or NULL if no time base is needed. Following common
convention, this method stores the current A5 register value in the port’s refCon. You
may change this by calling SetRefCon.

Introduction

WritePacket OSErr WritePacket(MIDIPacketPtr theMIDIPacket);
Call MIDIWritePacket to send theMIDIPacket to the MIDI Manager.

Write OSErr Write(char * theData, short theDataLen);
Copy theData to the MIDI Manager with a timestamp of zero and MIDI packet flags
value of midiTimeStampCurrent. Breaks long messages into multiple MIDI
Manager calls.

WriteTS OSErr WriteTS(char * theData, short theDataLen, long
theTimeStamp);

Copy theData to the MIDI Manager with the specified timestamp and a MIDI packet
flags value of midiTimeStampValid. Breaks long messages into multiple MIDI
Manager calls.

DoMIDIWrite OSErr DoMIDIWrite(char * theData, short theDataLen,
unsigned char theFlags, long theTimeStamp);

This method is used by Write and WriteTS to send MIDI data. It is private to
CMIDIOutputPort, and should not be called directly by the application.

Introduction

CMIDIPort

Introduction
CMIDIPort is an abstract class for
implementing classes which deal
with MIDI ports.

Heritage
Superclass CObject
Subclasses CMIDIDataPort

CMIDITimePort

Using CMIDIPort
CMIDIPort contains methods and
instance variables which are
common to all port objects. You
should use descendants of this class
in your application.

Variables
Variable Type

Introduction

Description
itsRefNum short Reference number returned by

MIDIAddPort.
itsPortID OSType Four byte port identifier.
itsResult OSErr Result code from MIDIAddPort.
itsVersion unsigned short Stores the short

MIDI Manager version number.

ItsVersion is used to flag whether the gMIDIClient object has been created,
and whether it appears that it was successful opening the MIDI driver. All port methods
check this variable before issuing any MIDI Manager trap calls. Some methods use it
to check for the presence of version 2.0. ItsResult is used by LoadPatches
and SavePatches to determine whether any virtual connections were resolved when
the port was created.

Methods
IMIDIPort OSErr IMIDIPort(MIDIPortParamsPtr portParams, short

bufSize);
Call MIDIAddPort to add itself to the list of application ports. IMIDIPort is a
protected method, you should not call it directly. This method is called by
IMIDITimePort, IMIDIInputPort, and IMIDIOutputPort.

Introduction

The global TCL variable gSignature, which normally contains the application’s
creator ID, is used as the client ID for all ports.

This method initializes the instance variable itsVersion to gMIDIClient-
>GetShortVerNum(), so that port methods can efficiently determine whether the
MIDI Manager drivers are present. It also stores the result of MIDIAddPort in
itsResult for use by LoadPatches and SavePatches.

Dispose void Dispose(void);
Note that Dispose does not call MIDIRemovePort. Doing so causes serious
problems with the MIDI Manager (as I discovered after many long hours of
debugging).

GetPortInfo MIDIPortInfoHdl GetPortInfo(void);
Return a data structure containing all port connections. See the “MIDI Management
Tools” documentation of MIDIGetPortInfo for more information about the fields
of the MIDIPortInfoHdl structure this handle points to.

GetRefNum short GetRefNum(void);
Return the port reference number. This can be used to optimize processing speed within
a read hook routine. It also is used to specify a time base's reference number when
creating an input or output port.

GetRefCon long GetRefCon(void);
Return the port’s refCon, which is initially set to register A5.

SetRefCon void SetRefCon(long theRefCon);
Change the port’s refCon.

GetPortName void GetPortName(StringPtr theName);
Return the port name. The name can be up to 32 characters long.

SetPortName void SetPortName(StringPtr theName);
Set the port name. The name can be up to 32 characters long.

SavePatches OSErr SavePatches(ResType theResType, short theResID);
Save the current patch connections in a resource of type theResType with ID equal
theResID. The name of the resource is set to the port’s name.

SetConnectionProc void SetConnectionProc(ProcPtr theConnectProc, long
theRefCon);

Introduction

This method is for MIDI Manager version 2.0 or later. The function
theConnectProc will be called whenever a connection is made or broken for this
port. Refer to “MIDI Management Tools 2.0 Addendum” for more information about
connection procedures.

GetConnectionProc void GetConnectionProc(ProcPtr * theConnectProc, long *
theRefCon);

Returns the port’s connection procedure address and its associated refCon. Valid for
MIDI Manager 2.0 or later.

Introduction

CMIDITimePort

Introduction
CMIDITimePort implement a MIDI
Manager time port.

Heritage
Superclass CMIDIPort
Subclasses None

Using CMIDITimePort
An application may have one or
more time ports. You should create
time port objects before any input or
output ports which will use the time
port as a time base.

Variables
None.

Methods

Introduction

IMIDITimePort OSErr IMIDITimePort(StringPtr theName, OSType
thePortID, Boolean theVisibleFlag, short theFormat);

Initialize a time port. Specify the port name and four character port ID. Set
theVisibleFlag equal TRUE if the port should be visible in PatchBay. Refer to
MIDI.h for time format constants.

LoadPatches OSErr LoadPatches(ResType theResType, short theResID);
If itsResult is zero, check for a resource of type theResType and ID equal
theResID. If present, call MIDIConnectTime for each connection.

GetSync short GetSync(void);
Call MIDIGetSync. Possible return values are midiInternalSync or
midiExternalSync. If the MIDI Manager is not present, returns a -1. To change
port synchronization, call SetExternalSync or SetInternalSync.

SetExternalSync void SetExternalSync(void);
Call MIDISetSync to set external synchronization.

Introduction

SetInternalSync void SetInternalSync(void);
Call MIDISetSync to set internal synchronization.

UpdateSync short UpdateSync(void);
This method checks whether the time base is connected to another time base and
adjusts the time port’s synchronization accordingly. It is called by IMIDITimePort
and Perform.

You may call UpdateSync directly from your application when you wish to have a time
port’s synchronization checked. If gMIDIClient –>WorldChanged returns TRUE, you
should send all CMIDITimePort objects an UpdateSync message.

UpdateSync returns the (possibly new) current sync setting for the port.

GetCurTime long GetCurTime(void);
Call MIDIGetCurTime. If the MIDI Manager is not present, returns zero.

SetCurTime void SetCurTime(long theTime);
Call MIDISetCurTime.

StartTime void StartTime(void);
Call MIDIStartTime.

StopTime void StopTime(void);
Call MIDIStopTime.

GetOffsetTime long GetOffsetTime(void);
Call MIDIGetOffSetTime. If the MIDI Manager is not present, returns zero.

SetOffsetTime void SetOffsetTime(long theOffset);
Call MIDISetOffSetTime.

WakeUp void WakeUp(long theBaseTime, long thePeriod, ProcPtr
theTimeProc);

Call MIDIWakeUp.

SetConnection void SetConnection(ProcPtr theConnectionProc);
This method performs one of two actions.

If the version of MIDI Manager running is at least 2.0, and theConnectionProc is not
NULL, then it calls SetConnectionProc using the port’s refCon (usually A5).

Introduction

Otherwise it send gApplication an AssignIdleChore(this) message (see
Perform).

Perform void Perform(long * maxSleep);
This method allows you to automatically check for connections made while your
program runs. Pass this time port object to gApplication–>AssignIdleChore,
and the application will call its Perform method during idle time. This method
checks for a change in its MIDI world, and calls the UpdateSync method when a
change is detected. If you create a connectionProc (version 2.x or later) you do not
need to use this method.

Since it is more efficient, you should use the SetConnection method to specify a
connection procedure.

Introduction

Global Variables

Introduction
CMIDI contains one global object,
gMIDIClient.

Global Objects
gMIDIClient CMIDIClient * gMIDIClient;

Every application which uses CMIDI objects must initialize gMIDIClient before
any port objects are created. Refer to the section on programming CMIDI for more
information.

Introduction

Creating a
 MIDI Manager Library

In order to use the MIDI Manager software with THINK C, you must first convert the
MPW object file (MIDIGlue.o) and header file (MIDI.h). The result is a THINK C
library file which should be included in any project using MIDI Manager calls and a
THINK C compatible header file.

You will need to do this conversion only once.

Step 1. Convert the MPW file MIDIGlue.o to a THINK C library.

(a) Start oConv (supplied with THINK C), and check the box marked “.v” file.

(b) Select the MIDIGlue.o file, and click on Convert. After it completes, click on
Convert again. (It’s very important to do this twice!). After quitting oConv, you
should see two new files, MIDIGlue.π and MIDIGlue.v.

(c) Open MIDIGlue.π. You should see one module titled “SndDispVersion”. (If
you don’t, or the name is in all uppercase letters, you have made a mistake and
should start over.) Select Build Library... to create a library file. You may wish
to store it in the THINK “Mac Libraries” folder with the other library files. You
can then delete MIDIGlue.π and MIDIGlue.v, they are no longer needed.

Step 2. Convert the MPW header file MIDI.h to THINK format.

NOTE: The file MIDI.h provided with THINK C 5.0 is from MIDI Manager
version 1.2. Since these libraries are for MIDI Manager 2.0, you should
substitute the MIDI.h file found on your MIDI Management Tools diskette
for the one in THINK C, and make the following changes.

(a) Ad the preprocessor statement:

#define _H_MIDI
at the beginning of the file.

(b) Remove the extern keyword from the declaration of SndDispVersion.

Introduction

(b) If you wish, using a tool like ResEdit or DiskTop, change the file creator to
'KAHL' so that it will have a THINK C document icon (this step is not
required).

Using THINK C 4.0 or MIDI Manager 1.2
With slight modifications, you can use CMIDI with either THINK C 4.0 or MIDI
Manager 1.2. You are strongly urged to upgrade, however.

If you are using THINK C 4.0, change the class definitions in the .h files to
struct and remove the access specifiers private:, protected:, and
public:.

You will need to change the single line comments (//…) to standard comments (/*…
*/) in all source files.

You must also remove all references to MIDI Manager 2.0–specific features in the source files, as these function
calls and constants will cause compile or link errors. For example, the CMIDIInputPort::DiscardPacket
method can be deleted.

Introduction

